Oblique Decision Tree Algorithm with Minority Condensation for Class Imbalanced Problem
نویسندگان
چکیده
منابع مشابه
A Robust Decision Tree Algorithm for Imbalanced Data Sets
We propose a new decision tree algorithm, Class Confidence Proportion Decision Tree (CCPDT), which is robust and insensitive to class distribution and generates rules which are statistically significant. In order to make decision trees robust, we begin by expressing Information Gain, the metric used in C4.5, in terms of confidence of a rule. This allows us to immediately explain why Information...
متن کاملAn Evolutionary Algorithm for Oblique Decision Tree Induction
In the paper, a new evolutionary approach to induction of oblique decision trees is described. In each non-terminal node, the specialized evolutionary algorithm is applied to search for a splitting hyperplane. The feature selection is embedded into the algorithm, which allows to eliminate redundant and noisy features at each node. The experimental evaluation of the proposed approach is presente...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولSafe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem
The class imbalanced problem occurs in various disciplines when one of target classes has a tiny number of instances comparing to other classes. A typical classifier normally ignores or neglects to detect a minority class due to the small number of class instances. SMOTE is one of over-sampling techniques that remedies this situation. It generates minority instances within the overlapping regio...
متن کاملHHCART: An Oblique Decision Tree
Decision trees are a popular technique in statistical data classification. They recursively partition the feature space into disjoint sub-regions until each sub-region becomes homogeneous with respect to a particular class. The basic Classification and Regression Tree (CART) algorithm partitions the feature space using axis parallel splits. When the true decision boundaries are not aligned with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Journal
سال: 2020
ISSN: 0125-8281
DOI: 10.4186/ej.2020.24.1.221